

Simulating Javascript Models

William_Kaupinis@eightolives.com Mar 29, 2010

Abstract

Hardware models described by ECMA Javascript provide an easy, no-compile way to simulate a design using eightolives' Workspaces Desktop tools.

A ScriptableArchitecture using an external Javascript file is developed for a D flip flop and simulated.

eightolives.com Why Javascript?

- ECMA Javascript is an established objectoriented language which does not require a compiler to execute
- It interfaces to the eightolives Workspaces
 Desktop toolset and designs
 - 1) Define the interface
 - 2) Create a Javascript template using the DesignTool
 - 3) Add the functionality in the Editor tool
 - 4) Import the Architecture
 - 5) Simulate the design in the WaveformViewer tool

eightolives.com How it works

- Hardware is modeled using the Java package com.eightolives.Hardware API
- The API's ScriptableArchitecture class calls three functions in a Javascript file
 - initialize() defines the relevant Signals and variables
 - uninitialize() initializes signals and variables prior to a simulation run (set things to 'U')
 - execute() called to modify state and outputs when an input changes (this is where the functionality lies)

eightolives.com Step 1 Define the Interface

 Create an Element in the DesignTool by reading in a VHDL file or just use the menus to create the Element and add I/O ports

LIBRARY IEEE;

```
USE IEEE.std logic 1164.ALL;
USE IEEE.std_logic_unsigned.ALL;
USE IEEE.std_logic_arith.ALL;
LIBRARY WORK:
ENTITY dff IS -- model a D flip flop
GENERIC(
  Td : Time := 5 ns -- specify delay time
  );
PORT(
  D : IN std logic;
  CLK : IN std_logic;
  RESET_N : IN std_logic;
  PRESET_N : IN std_logic;
  Q : OUT std_logic
  );
END dff:
ARCHITECTURE default OF dff IS
BEGIN
END default:
```

eightolives.com Step 2 Right Click the Element

Select Make New > Javascript > Architecture Template

👷 Workspaces Desktop — 🗆 🗙												
File Applications Workspaces Frames Preferences Help												
Home												
0												
	1Ē	🗖 🗂 Design Tool 🗖 🔂										
~	Fi											
2		3333335	Design:	Space	1000	Element	t: TOP.dff					
₽			🔶 🧰 🛛 Lik	praries		URI:	7					
			👇 🕨 Nev	Make New 🕨 🕨	VHDL		ne/kaupinis/dff.vhd					
R			• •	Check 🕨	Java		Architecture: Default					
÷.			∳ -1	View >	Verilog		Architecture: Derbuit	1				
				Group 🔸	Javascript	•	Architecture Template					
				Edit Element	Shell	•						
99				Import Architecture	Document	•	onents of dff					
				Make All Ports INOUT	Testbench							
				Add to >	Dynamic Test	tbench						
***				Load All Components	Test Beest Test							
	•			Ons N	Kesel Test	oste						
- di l				Delate Flamout	Sandhox	2313						
				Delete Element								
			,					il l				
]					

eightolives.com The Created Template (1 of 4)

// dff_architecture.js

2 forward slashes // define start of a comment

// This is a template for a Javascript part of a ScriptableArchitecture

// let a be the Architecture for which this script implements functionality

a = null; // we define "a" as the Architecture object

// let e be the the parent Element

e = null;

// we define "e" as the parent Element object

// define internal variables

LOGIC_0 = 48; // ASCII 0 decimal version // Javascript quirk expresses characters as ASCII codes

LOGIC_1 = 49; // ASCII 1 decimal version // use these variables when making comparisons

lastclk = 'U';

Td = new com.eightolives.Hardware.Time("Td", "1 ns"); // defines a delay time object

iQ = 'U'; // variables of all outputs are made with an"i" prefix Copyright © 2010 William Kaupinis All Rights Reserved

eightolives.com The Created Template (2 of 4)

// initialization routine

function initialize(architecture)

// the initialize function initializes and defines all variables

```
{
```

```
a = architecture;
```

e = a.getParent();

if(e.getLabel() != null) cpf.print("This model is for " + e.getLabel() + ": " + e.getFullName()); // cpf.print prints to the CommandProcessor window else cpf.print("This model is for " + e.getFullName());

att = new com.eightolives.Hardware.Attribute("PRIMITIVE", "true"); // the PRIMITIVE attribute must be set true to indicate its simulatable e.setAttribute(att);

```
// initialize all varaibles used in the script
D = e.getSignal("D");
CLK = e.getSignal("CLK");
RESET_N = e.getSignal("RESET_N");
PRESET_N = e.getSignal("PRESET_N");
Q = e.getSignal("Q");
Td = e.getGeneric("Td").getInitialValueAsString();
lastclk = 'U';
iQ = 'U';
} // end initialize
```

eightolives.com The Created Template (3 of 4)

// uninitialize is used to define all internal variables prior to start of simulation
function uninitialize(simqueue)

```
{
```

```
sim = simqueue; // sim is a reference to the simulator
```

```
cpf.print("uninitialize()");
```

// initialize all internal variables

```
lastclk = 'U';
```

```
iQ = 'U';
```

} // end uninitialize

eightolives.com The Created Template (4 of 4)

I/ execute is called during simulation whenever a related Signal changes

```
function execute() // this is where the functionality is modeled
```

```
{
// template synchronous code // templates examples of code are included but commented out
// if(RESET N.isLow())
// {
// }
// else if((lastclk == LOGIC 0) && CLK.isHigh()) // detect rising edge
// {
// }
// template asynchronous code
// iQ = DIN.getCvalue();
// iY = A.and(B.or(C));
// assign outputs with delay
// Q.setTo(iQ, Td);
// save clock values for next cycle edge detection
// lastclk = CLK.getCvalue();
} // end execute
//end of Javascript part of ScriptableArchitecture
```

eightolives.com Step 3 Edit the execute() function

// execute is called during simulation whenever a related Signal changes

```
function execute()
{
if(PRESET_N.isLow())
        {
        iQ = '1';
        }
        Sav
else if(RESET_N.isLow())
        {
        iQ = '0';
        }
else if((lastclk == LOGIC_0) && CLK.isHigh()) // detect rising edge
        {
        iQ = D.getCvalue();
        }
// accign outputs with dology
```

Save the file as *element_name_*architecture.js

For this example it's dff_architecture.js

```
// assign outputs with delay
Q.setTo(iQ, Td);
```

```
// save clock values for next cycle edge detection
lastclk = CLK.getCvalue();
```

```
} // end execute
```

eightolives.com Step 4 Import Architecture

шы ансэ

N٥	Make New	Þ
Þ	Check	۲
የ	View	۲
	Group	۲
	Edit Element	
	Import Architecture	
	Make All Ports INOUT	
	Add to	Þ
	Load All Components	
	Test	•
	Ops	Þ
	Delete Element	

- Right click the Element in DesignTool and select Import Architecture and select the .js file saved in step 3
- A Scriptable Architecture will be added to the design
- A CommandProcessor window will open and execute the script

eightolives.com Step 5 Simulate

, ,,	Workspaces	s Desktop	- 🗆 ×
File	Application	s Workspaces Frames Preferences Help	
3333333	Home		
1			
	Comn 🖂 Comn	nand Py 🛅 Design Tool 👘 🗹 🔤	
	File Op	Waveform Viewer dff	
2	Try execu	File Edit View Tools Simulate Preferences Heln	
-	runscript .	We can view roots simulate references neip	_
Ψ2		K 1 0 H L Z X A T T H H O TS 500 ns	
R		Signal Value Waveform	
-2-			<u>~</u>
~		dff.TOP.PRESET_N 1	v
			+
68		Time 100 ns 200 ns 300 ns 4	
			»
5			>
***			1
H			•
ad		×c	
A			
		Cursor 1:35 ns Cursor 2:0 ns Delta: -35 ns ston sim at 521 ns	
	dff_		
J			

Right click the Element View > Waveforms

Copyright © 2010 William Kaupinis All Rights Reserved

eightolives.com Signal Objects

- Signal objects i.e. A = e.getSignal("A"); use methods defined by com.eightolives.Hard ware.Signal
 - A.getCvalue() returns the character value of the Signal
 - A.nand(B) returns the character result of (A nand B)

Copyright © 2010 William Kaupinis All Rights Reserved

Example Signal Ops:

```
iQ = A.nand(B.or(C));
iY = D.xor(A);
if(A.getCvalue() == Logic_0)
        {
        iZ = D.getCvalue().nand(iQ);
        }
iY = A.not();
IQ = B.nor(A.and(C).or(B.and(D)));
```

eightolives.com Variables

- Use Javascript variables for storing computation results and state information
 - lastclk = CLK.getCvalue();
- Javascript variables follow Javascript rules
 - iTemp = A.nor(B.nand(iJ));
- Assign variables to output signals using the Signal's setTo method
 - Q.setTo(iTemp, "250 ps");

Hints

- Error messages appear in the Java Console or in the CommandProcessor window.
- Javascript is case sensitive
- Any variables you create should be included in the initialize and uninitialize functions
- Predefined objects give you access to the tool environment
 - ws Workspaces ws.getDateStamp()
 - cpf CommandProcessorFrame cpf.print("stuff")
 - dt DesignTool dt.getElementByName("
- Use cpf.print("iQ = " + iQ); to display messages in the CommandProcessor window

Hints

 You can autoload the .js file from a VHDL entity-only file by adding an ATTRIBUTE SCRIPTABLE = "pathname "

ATTRIBUTE PRIMITIVE : STRING;

ATTRIBUTE PRIMITIVE OF dff : ENTITY IS "true";

ATTRIBUTE SCRIPTABLE : STRING;

ATTRIBUTE SCRIPTABLE OF dff : ENTITY IS "pathname.js";

eightolives.com You can run this demonstration

- From Workspaces Desktop > Bookmarks
 - Select Resources > Examples > Simulating Javascript (this loads the dff.vhd interface definition – VHDL entity)
 - Right click the dff Element in the design tree and Import Architecture selecting dff_architecture.js
 - Right click the dff Element and View > Waveforms
 - File > Load > VCD Project Waveform
 - Select dff.vcd
 - Click the "+" button (Add waveforms to the sim queue)
 - Click the ">>" button to run the sim

eightolives.com For more information

- Check the tutorials at http://www.eightolives.com/tutorials.htm
 - Workspaces Desktop Tool Overview
 - Scripting
 - Modeling Hardware in Java
- Read the Workspaces Desktop Users Manual
- ECMA Javascript info at

http://www.ecmainternational.org/publications/standards/Ecma-262.htm